
a specific electrical stimulation system not only confirmed the high efficiency of this system 
but also permitted formulation of a number of recom~nendation on its further perfection. 

NOTATION 

Pe is the discharge power, W; P, I, U, P, I, U are local values of the discharge power, 
current and voltage along the stream and their average values, W, A, V, respectively; ~, gain 
of the active medium, m-l; T, translation temperature of the medium, K; T s is the vibrational 
temperature of the upper lasing level; R is the mirror radius of curvature, m; L, Lk, anode 
and cathode length, respectively, m; D is channel width, m; H is channel height, m; Ep is the 
magnitude of the interelectrode gap. 
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CALCULATION OF A BOREHOLE SOIL HEAT EXCHANGER FOR STORING 

HEAT IN THE WATER-BEARING STRATUM TAKING INTO ACCOUNT FREE 

CONVECTION OF THE FORMATION FLUID 

V. M. Lukin UDC 66.045.3:624.131.6 

A mathematical model of charging and discharging processes in a borehole soil 
heat exchanger for storing heat in a water-bearing stratrum is proposed. The 
model takes into account heat transfer owing to free convection of the forma- 
tion fluid in a water-saturated porous medium and heat losses in the water- 
impermeable soil formation with reverse motion of the heat-transfer agent. 
The results of numerical calculations of the temperature distribution in the 
heat exchanger, performed by the integral balance method for some values of 
the parameters, are presented. 

Introduction. In the last few years serious attention has been devoted to the problem 
of storing heat in natural and artificial water-bearing strata as one way to conserve energy 
and fuel [i, 2]. 

In traditional underground storage systems a pair or group of boreholes, some of which 
are used to extract underground water followed by heating or cooling in an intermediate heat 
exchanger while others are used to force water into the formation, are employed. Quite large 
amounts of heat can be extracted in such a scheme, but the pumping of highly mineralized im- 
pure underground waters, which are highly corrosive and have a tendency to deposit salts, 
has a deleterious effect on the heat-exchange equipment and the surrounding medium. 
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Fig. i. Diagram oflthe borehole soil 
heat exchanger (a -- charging; b - 
discharging): l)iborehole; 2) interior 
circulation pipes;3) intermediate 
zones of water-impermeable rock; 4) 
water-bearing strata. 

Under these conditions ~t is better to use a borehole soil heat exchanger (BSH) of the 
type "pipe in a pipe" (Fig. I), consisting of a cased borehole with a coaxially positioned 
interior pipe with a smaller diameter and not coupled hydraulically withthe water-bearing 
stratum. In the charging process a heated heat-transfer agent is injected into the inner 
pipe. During discharging the direction of motion of the heat-transfer agent in the inner 
pipe and the annular gap is reversed. 

The main mechanism of heat transfer in the soil near the section of the well in the water- 
hearing stratum is free convection of the formation fluid: ascending filtrational flow along 
the surface of the borhole during charging and descending flow during discharging. In the 
intermediate zone between the earth's surface and the water-bearing stratum, consisting of 
water-impermeable rock, heat exchange between the borehole and the soil occurs by means of 
heat conduction in the soil. 

This author knows of only two publications [3, 4] devoted to the analysis of the thermal 
interaction between the presurized fluid flow in the channel and the free-convective flow 
in the surrounding medium. It should be noted that the computational principle, employed 
in [3, 4], which inclues the simultaneous numerical solution of the equations of heat transfer 
in the channel and the surrounding medium, is quite complicated and requires large amounts 
of computer time. This is a consequence of the nonlinearity of the equations and the ne- 
cessity for using an iteration procedure to solve the coupled problem. 

Mathematical Model and Method of Solution. We shall employ the boundary-layer approxi- 
mation to describe the free-convective flow in the porous medium around the borehole. It 
is shown in [5] that with an appropriate choice of the approximation profile of the tempera- 
ture in the boundary layer, taking into account the asymptotic behavior for small and large 
distances from the front edge in the direction of the flow, satisfactory accuracy can be 
achieved using an approximate computational method based on integral relaitons for the free- 
convective boundary layer in the porous medium around a vertical cylinder. 

We shall formulate the problem of the thermal interaction between the pressurized flow 
of heat-transfer agent in the borehole of the BSH and the free-convective flow of formation 
fluid in a porous medium using the traditional simplifying assumptions. It is assumed that 
the liquids in the borehole and the stratum are incompressible, their physical properties 
are constant, and the flow in the borehole is stabilized; in addition, longitudinal heat con- 
duction is neglected. The free-convective flow is described by the boundary-layer equations 
in the Darcy-Boussinesq approximation for radial symmetry. 

In [6] it is shown that already a short time after heat-transfer agent starts to cir- 
culate in the BSH the time derivatives in the heat-transfer equations for the borehole can 
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be neglected. The equations of the quasistationary approximation for the mean-integral tem- 
perature of the heat-transfer agent are also given in [6]. In the intermediate zone of water- 
impermeable rock the coefficient of nonsttionary heat transfer k~ is used to describe the 
heat exchange between the borehole and the surrounding soil in the quasistationary approxi- 
mation. 

The system of equations of coupled heat transfer between the BSH and the soil mass will 
have the same form for the charging and discharging regimes, if the x axis is oriented along 
the direction of free-convective flow in the porous medium. For charging the x coordinate 
is measured form the bottom of the borehole vertically upwards while for discharging it is 
measured from the edge of the water-bearing stratum vertically downwards. 

In the intermediate zone of water-impermeable rock (L < x J L + H, -H 5 x < 0 discharg- 
ing): 

a--Y-x = c ~  (1)  

Ox cpO %0 

In the zone of the water-saturated formation (0 < x 5 L): 

at~ ~ 

Ox 

a t ~  ~ - 2~ro% (tlI 
Ox c;G 

- -  (t~ - to'). (2 )  

cvG 
2aRo i l l  r I,,. 

Ct~G 

- -  0 @  = OX (/'LP~) -t- (/'Or) 0, 

ktJg i v~ - (7" ~ -- To), 

(3)  

OT!I J 
Or ,=~o' (4) 

( s )  

(6 )  

aT  ~ a T  tI a I~ a ( OTI~ 1 
v,~ Ox + v~ a-----?- = ~ -  Or r - " - b T - :  " 

. / 

The boundary conditions for Eqs. ( 1 ) - ( 7 )  are: 

charging: 

discharging: 

(7)  

t i '  (L + g) = to. (8 ' )  

tl (L) = ~I I (O,  t~ (L) = t~' (a), ( 9 ' )  

t i ' (0)=t~'(0),  v~(0, r )=0 ,  r ' I (0,  r)=Vo, (1O') 

O~xGL:t~I(x)=T1~(x, Ro), w(x, Ro)-=0, (11')  

T"(x, oo)=T0=F! - /+TH,  v,:(x, oe )=0;  (12 ' )  

t~ ( - H )  = to, (8")  
II l{ (o) = t{ ' (o), t~(o)=l~  (o), v~(o, 4 = 0 ,  T ~ (0, : ) - r e ,  (9")  

tI' (L) = t~' r  ( lO")  

O~x~L : t~ (x )=T I I ( x ,  Ro), vr(x. Ro)=0, (11") 

Tit(x, oo)=To- FH+T., Vx(X, oo):=0 (12") 

Rela t i ons  fo r  c a l c u l a t i n g  k~ are  p r e s e n t e d  in [6] .  In  p a r t i c u l a r ,  k~ can be determined to 
within 5-10% using the approximate formula 

kx ~ ~ 
1 + Bi In (1 -+- 1 , / ~ , ~  ' ( 1 3 )  
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where the parameter ~i is a function of the number Bi: 

~ = a - -  1,35843Bi-1'! 3 In (I +Bi). (14) 

The heat-transfer coefficient ~0 between the flow of the heat-transfer agent in the inner 
pipe and the flow in the space between the pipes is given by the relation 

Bi~ 
ao = el (15) 1 + Bi 1 -~ Bi2 

We t r ans fo rm in Eqs. ( 1 ) - ( 2 )  to d imens ion les s  v a r i a b l e s :  

t o - - T o  - to To x = L 

OO{ __ Nuo (OI_O~)__?, (16) 
0x Pe 

oG _ Nu0 ( o ] - o ~ ) + ~ -  N~ 
0x Pe Pe 

The boundary c o n d i t i o n s  for  Eqs. (16) - (17)  a r e :  

cha rg ing :  

O~. (17) 

oi (I + h) ---- o o, ( i 8 ' )  

Ol (1) = 011 (1), 021 ( 1 ) -  O~ I (1); ( 1 9 ' )  

discharging: 

@~ (--h) --= O ~ (18") 

(19")  oI (o) = ol'(o), o~ (o)= o~i (o). 

Differentiating Eq. (17) with respect to x and expressing the derivative L d~ (@~--O~), 
dx 

using Eqs. (16) and (17) we obtain a second-order linear differential equation with constant 

coefficients for 0~(~): 

d@~ Nu dO~ NuNuo I 
d~2 ~- Pe d~ pe 2 02 = 0. (20) 

The general solution of Eq. (20) has the form 

O~ (x) ---- C1 exp (p~x) -~- C,, exp (--pzx), (21) 

where 

Nu ( /  4Nuo ) 
p ~ = 0 , 5 ~  1// 1 -F Nu 1 ; 

Using Eq. (17) we find 

Nu(k 
p~ = 0 , 5 - ~ e  I -~ 4 Nuo ) 

Nu + I . 

Nu Pep~ ) exp(p~)-F 
o I G ) = G  ~ u  + 1 +  Nu----~-- 

-FC~( Nu -t-1 Pep,,. )exp(--p~) Pc? 
Nu o - -  N u---~ 

We determine the constant C I and C 2 using the boundary conditions (18)-(19): 

charging: 

C 1 
Nuo @ ~ -F ~ Pc- -  (Nu o 011 (1) -F 2 Pc) exp (--p2h). .  

(Nuo -t- Pe p2)(e'xp (Pt -F p lh )  - -  exp (pl  - -  p2h)) 

(22) 

(23) 

(24')  
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(Nu o 811 (1) q- y Pe) exp (p~h) - -  Nu o O ~ - -  I ;  Pe 
C~ -- (Nu q- Nu 0 - -  Pe p2)(exp (p~h - -  p.,) - -  exp ( - - p e  - -  p2h)) ; ( 2 5 ' )  

discharging: 
( • 0  ~L-~I I 

- -  ~9 (0) exp ( p ~ . h )  

C~ = exp ( - - p ~ h ) - -  exp (p,,,~) ' ( 2 4 " )  

C~ 
O~ ~ (0) exp (--/)1 h) - -  0 0 

exp ( - -pah)  - -  exp (p,,_h) 

We shall now study the system (3)-(7) with the boundary conditions (9)-(12). 
an integral relation we multiply Eq. (7) by r and integrate over r from R 0 to ~. 
equation of continuity (5) and motion (6) we obtain the relation sought. In dimensionless 
coordinates 

we have: 

s 
O I I  __ t I l I - - T o  , O~ I - - - r e  

to -- To t~ -- T O ' 

@ I I _  T : I - - ' / ' o  r =  r x =  x 
to - -To  ' Ro ' L 

- --02 ), 
ax Pe 

( 2 5 " )  

To derive 
Using the 

(26)  

ae~ ~ 
a~ 

Nuo lr I i 
- -  = --P7- t,,, - e~ ~) + 

c a o  I~ ;=~ 
= - , (27)  Pe Or 

dx " Ra 0~ 7=1" (28)  

Boundary conditions: 

charging: 

discharging: 

8I  (1) = 6)I ~ (1), 6),] (1) = (-),j' (I), ( 2 9 ' )  

e l '  (0 )=  0~I (0), 0 I I = 0 ;  ( 3 0 ' )  

e l ' ( 0  = e l  I (-)" - :  (I), == o, ( 2 9 " )  

e l  (0) = o~ '  (0), e~  (0) = e l  I (0). : 3 0 " )  

To s o l v e  t h e  s y s t e m  ( 2 6 ) - ( 3 0 )  i t  i s  n e c e s s a r y  t o  s p e c i f y  t h e  fo rm o f  t h e  a p p r o x i m a : i o n  
p r o f i l e  o f  t h e  d i m e n s i o n l e s s  t e m p e r a t u r e  in  t h e  b o u n d a r y  l a y e r  a round  t h e  w e l l .  I t  i s  ]mown 
[7] that for the case of radial symmetry the asymptotic temperature distribuiton for R 0 << I 
has a logarithmic singularity. We shall give the temperature profile in the boundary layer 
in the form 

( ln7 ) 7 ~ . ~ A . < ~ e x p ( A ) ,  ( 3 1 )  

where  t h e  p a r a m e t e r  A i s  a f u n c t i o n  o f  x and A i s  t h e  d i m e n s i o n l e s s  t h i c k n e s s  o f  t h e  b o t n d a r y  
layer. The relation (31) satisfies the boundary conditions of the problem and describes the 
flow asymptotically correctly. 

From Eq. (31), expressing the gradient at the borehole as 

a @ ~  / _ e.] ~(2) 

t O r  g=t A 

and substituting into Eqs. (27)-(28), we obtain finally: 

d~IZ -- Nu~ ( e [ ' _ e ~ ) ,  (32)  
d~ Pe - 

6 0 7  



dO~ I NL10 (OlI oJ~ I) CO~ I 
a'-x = Pe ~ PeA ' (33)  

aoII d [(O~)Z/(A)l . 2 (34) 
dx Ra A 

where f(A) = [exp(2A) -2A 2 -2A - I]/A 2. 

Using Eqs. (32)-(33) to express 0~ I and substituting into Eq. (34) we obtain a relation 
between 0 II, 0211 and the parameter A: 

4 P e  ( o i l  ___ (.)Ill) = D, (35)  
((-)~)= [ (A) + c l?-----~ 

where D is an integration constant. 

charging: 

discharging: 

Using the boundary conditions (29)'(30) we find 

D = O, (36 ':) 

D = 4 P_____~e lO~i (!) - -  (-)I' (1)1 = (O~i)2 [ (A)I;=~. (36")  
c Ra 

To determine the parameter A we shall carry out the differentiation on the left side of the 
relation (34). Using Eqs. (32)-(34) we obtain: 

Nu0 d~iI U, (37)  
= Pe ax 

dy 4 [ 2 Nuo -i/~[(y)U j + 4c/(v) (38)  
d~ = [1('/)(O1 ) U) [ R a  Pe Pef l (y)  ' 

where [i (Y) = 2 [exp ( 2 V ~  (-1/u 1) -+- ~,/yq- lily ale. 
In Eqs. (37)-(38) U = O~ z - O~ I is related with O~ i and y = A 2 by a relation following 

from Eq. (35): 

U ~ [ 4 P e  ~ I  ( 2 P e ) 2  D ]I/2 
cRa [@])+ cRa[(y) + T ~  + @ I r f f  2Pe c~af(v) (39) 

The boundary  c o n d i t i o n s  f o r  Eqs. ( 3 7 ) - ( 3 8 )  a r e :  

charging: 

dischrging: 

v(o) = o, (4o')  

OII(1) = el(l) ;  (41') 

v ( 0 )  - 0 ,  ( 4 0 " )  

~ I I  I 2 (1) -- O2(I). (41")  

To s o l v e  t h e  sys t em Eqs. ( 3 7 ) ' ( 3 9 ) w e s h a l l  t r a n s f o r m  i t  i n t o  an e q u i v a l e n t  sys t em of  
Volterra-Uryson integral equations of the second kind: 

c h a r g i n g :  
! 

Pe x 

discharging: 

vldi;  (42') 

+ NUo_ i U [OI ~, Vl -if; O~I~) = @'I (0) Pe 

y{~') = ~ 'F[OI  I, vldx. 

(42") 

(43) 
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Fig. 2. The distribution of the temperature of the 
heat-transfer agent along the borehole soil heat 
exchanger during discharging (a) and charging (b) 
with Nu 0 = 1 (i) and i0 (2). O=(t -T0)/(t 0 - 

T0), x = x/L. 

Here F ii [81 , y] denotes the right side of Eq. (38). 

The method of simple iteration was used to solve the system (42)-(43). The integlals 
in Eqs. (42)-(43) were calculated using the trapezoidal rule dividing the integration inter- 
val [0, i] into N segments (N = 50-100). The solution of the system (37)-(38) with Nu~ = 0 

was used for the zeroth approximation for @~z(~) and y(~). In addition, @~l(~) = const, and 

the values of y(~) are taken from the numerical solution of the Cauchy problem for the ordinary 
differential equation 

d~ ._ 4 [ 2 --o---~c/ 04 ] (44) 

((}) o; (45) 
2Pe i(  cRa/(Y)e'~'(O))' 2 ] 

CRall[t) 1+  Pe -- ] , (46) o 'G) 

where for the charging process: 

and for the discharging process: 

O,J' (0) (_}o __ 7h ' 147' ) 

) 2Pe [ N u  _ ( NulZ)]pe Nuh ~ - -  1--exp - - - -  . ~47") O~ I (0) .... O ~ exp ( - -  p--~ 

The s o l u t i o n  of  the  system (42 ) - (43 )  wi th  a r b i t r a r y  va lues  of  the  paramete r  Nu0 is  sought  
by t h e  method of  c o n t i n u a t i o n  us ing  s imple i t e r a t i o n .  In t h i s  p rocess  t he  i n t e r v a l  [0, Nu0] 
i s  d iv ided  in to  M segments (M = 10-20).  The s o l u t i o n . o f  the  system (42) - (43)  wi th  Nu~-~is  
used as t h e  z e r o t h  approximat ion  fo r  some va lue  of  Nu}. 

Results and Discussion. The computational process, based on the indicated algoritLms, 
was implemented in the form of a comptuer program written in FORTRAN for the ES computer. 
Preliminary computer experiments showed that for the conditions characteristic for the opera- 
tions of a BSH the process realized can be stabilized by choosing appropriate conditions for 
terminating the iteration cycles, the number of partition points in the itnerval of integra- 
tion, the initial step in the parameter Nu0, and the character of the change in the param- 
eter Nu0. 

As an illustration of the possibilities of this method we calculated the temperature 
distribution in a BSH with a total length of 200 m and the thickness of the water-bearing 
stratum L = i00 m and an operating period of , = 1 yr. The outer diameter of the borehole 
was equal to 400 mm and the diameter of the inner pipe was equal to 280 mm. The initial tem- 
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perature of the water-bearing stratum in the charging period T o = 12~ and in the discharging 
period T o = 80~ The values of the parameters of the problem are as follows: N = 0.6, Pe = 
25, c = 3, and y = 0.03 for charging and 1.167 for discharging. In the calculation the values 
of the parameters were varied as follows: Nu 0 = i-I0, R I = Ra/Pe = 10 -3 , 10 -2 , 10 -I , i, i0. 
The heat-transfer coefficients ~i and ~2 were determined from the dependences presented in 
[8] for turbulent flow in annular channels. 

Figure 2 shows the distribution of the temperature sought along the BSH for the indi- 
cated values of the parameters and R I = i. The calculations show that the temperature of 
the heat-transfer agent at the outlet from the BSH is determined primarily by the parameters 
R I, Nu, and Nu0, which determine the intensity of the external and internal heat transfer. 
Increasing the parameters R l and Nu, corresponding to an increase in the intensity of the 
external heat transfer, results in an increase of the degree of cooling (heating) of the heat- 
transfer agent. When the parameter Nu 0 is increased the available temperature differential 
decreases as a result of the increase in the relative energy of the flow going into cooling 
(heating) of the injected heat-transfer agent during its reverse motion. 

Conclusions. The coupled problem of the thermal interaction between the pressurized 
flow of heat-transfer agent in a borehole soil heat exchanger of the type "pipe in a pipe" 
and the free-convective flow of formation water in a porous medium was solved by the method 
of integral heat balances. This method permits reducing the system of partial differential 
equations to a boundary-value problem for two nonlinear first-order ordinary differential 
equations. The system of nonlinear ordinary differential equations was solved numerically 
by the method of simple iteration using the procedure of continuation in the parameter Nu 0. 

Analysis of the computational results permits making some practical recommendations. 
To increase the efficiency of heat storage, measures must be taken to reduce the intensity 
of internal heat transfer. The inner circulation pipe must be thermally insulated or made 
of a material with low thermal conductivity (IRP rubber, heat-resistant plastic such as PVPD 
polyethylene, etc.). In the intermediate zone between the earth's surface and the zone of 
heat extraction double pipes with layered vacuum thermal insulation can be used to reduce 
heat losses. 

NOTATION 

Here, t I and t 2 are the temperature of the heat-transfer agent in the circulation pipe 
and in the space between the pipes; T~ = F(L + H - x) + T n is the natural temperature dis- 
tribution in the intermediate zone during the charging period; T~ = F(x + H) + T n is the tem- 
perature distribution during the discharging period; To = FH + T n is the initial tempeature 
of the water-bearing stratum; T n is the temperature of the neutral layer; to is the tempera- 
ture of the heat-transfer agent at the inlet into the BSH; �9 is the operating time of the BSH; 
x is the distance along the axis of the borehole; H is the distance from the earth's surface 
up to the water-bearing stratum; F is the geothermal gradient; r is the radial distance from 
the axis of the well; r 0 is the radius of the inner pipe; R0 is the radius of the borehole; 
G is thel mass flow rate of the heat-transfer agent; cp is the specific heat capacity of the 
heat-transfer agent; ~l and ~2 are the heat transfer 5oefficients for flow in the inner pipe 
and in the space between the pipes; v x and v r are the axial and radial components of the 
filtration velocity; T II is the temperature of the water-bearing stratum around theborehole; 
k is the thermal conductivity; a is the thermal diffusivity; k is the permeability; $ is the 
coefficient of volume expansion of the formation fluid; g is the acceleration of gravity; 
~ is the kinematic viscosity of the formation fluid; 6 is the thickness of the wall of the 
inner pipe; Bi = =2R0/l I is Blot's number; Fo = al~/R~ is Fourier's number; Nu0 = ~0r0/l T 
is Nusselt's number for interior heat transfer; Nu = k~R0/iT is Nusselt's number for exterior 
heat transfer; Pe = G/2~LaTP T is the modified Peclet number; c = kll/lh; Ra = kSglt 0 - T01R~/ 
~a II is the modified Rayleigh number; Bi1=~w/~1~; BI~=~w/~26; y=rL/Jf0--~I; h=H/L; @o=(fo--T~)/(to--T~). 
Indices: i-2) circulation pipe and the interpipe space; I-II) intermediate zone and water- 
bearing stratum; h) heat-transfer agent; w) pipe wall. 
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CALCULATION OF HEAT TRANSFER ACCOMPANYING FLOW IN PIPES TAKING 

INTO ACCOUNT THE THERMAL RESISTANCE OF THE WALL 

Yu. V. Vidin UDC 536.24 

The starting nonlinear problem is reduced to a simpler form with the help of a 
linear approximation of the equation relating the tempeature of the outer and 
inner surfaces of the pipe. 

Particular solutions of the Problem of convective-radiative heating (cooling) of a liquid 
in laminar flow in pipes were obtained in [i] by the finite-different method taking into ac- 
count the transverse thermal resistance of the walls. The mathematical formulation includes 
the energy equation 

a~ O z O 1 a@ 

( 1 - - R  ~) ax dR 2 ~ R OR (1) 

with the boundary conditions: 

0~ B i [ 1 - - O @ p ( 1 - - O ' ; ) l  a t  R I, ( 2 )  
OR 

00 
- - 0  at R = = 0 ,  (3) 

OR 

0 - ~  O0 a t  X =  0 (4 )  

and  a r e l a t i o n  b e t w e e n  t h e  t e m p e r a t u r e  o f  t h e  o u t e r  8(X,  1 + a )  and i n n e r  0(X,  1) s u r f a c e s  
of the pipe: 

- -~Bi [1 - - ~  + p (1 --@~)l = O. (5) 

Here 

R - -  r . X 2x ; Pe W~ do. do 2ro; @ T ; @o To . 
r o Pe d o a. T~ T~ 

Bi ~ro d $k ~ T ~ r  o d Z d = ; p = - - ;  $ k -  ; f ~ - - ~  1. --. 
do Bi ~, do ~w do 

The comparatively large number of parameters makes it difficult to generalize the re-  
su l t s  of the numerical integration of the system equations (i)-(5). However, the problem 
(1)-(5) can be simplified. In many cases a function of the type (5) can be approximatec with 
a high degree of accuracy by a linear dependence 

= c + ( ]  - -  c) o ,  ( 6 )  

where the constant c is calculated from the relation 
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